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Abstract

The Posit extended RISC-V processor has gained tremendous attention as an alter-
native to its �oating-point counterpart as it o�ers extensive customization in terms of
dynamic range and precision. As a result, domain speci�c application developers have
started to embrace it as a viable solution in emerging �elds such as the big data ana-
lytics, machine learning and audio processing. However, the Posit compliant RISC-V
processor needs further enhancements to augment the acceptability. In this thesis, the
shortcomings of the existing Posit integration approaches are discussed and a novel
approach is put forth. Unlike the current approaches of extending the RISC-V ISA
with Posit, the thesis provides insights on how Posit can be incorporated along with
the �oating point arithmetic within the core. We also present a comparative study of
various Posit integration approaches in terms of the resource utilization and timing re-
quirements. From the analysis, it is found that the proposed approach performs better.
The proposed RISC-V processor instruction set supports three data types, namely, the
integer, �oating-point and the Posit arithmetic. This processor also supports data type
casting. This hardware unit helps in re-use or porting of existing code written using
integer/ �oating-point data types to be converted to Posit data type. Also it helps in
using mixed data types in the code. Two di�erent data type casting approaches such
as the mixed operand type and the data type converter approach are suggested. Com-
parison of these approaches are carried out in terms of speed and the area occupied.
Moreover, the Posit unit is modi�ed to support two di�erent exponent sizes, thereby
enabling dynamic switching between higher precision and dynamic range at run-time
with minimal overheads. The enhanced Posit compliant RISC-V processor is imple-
mented on an Artix-7 Xilinx FPGA.
Keywords: arithmetic, data type casting, �oating-point, IEEE-754, Posit, RISC-V.
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CHAPTER 1

INTRODUCTION

Burgeoning scienti�c and technological domain applications demand varied precision
and dynamic range arithmetic. Owing to the paucity of a suitable supplant, com-
puter architects still restrict themselves to the currently used IEEE 754-2008 complaint
�oating-point arithmetic. Use of �oating-point arithmetic can result in errors due to
rounding, under�ow and over�ow. This has resulted in the proposal of Posit arithmetic
as an alternative. It provides variable dynamic range, eliminates NaNs (not a num-
ber), mathematically incorrect multiple representation of zero and avoids under�ow
and over�ow through rounding.

Moreover, the variable size of the exponent and fraction �elds in Posit arithmetic
enables customization. A m-bit Posit substantially reduces the overall resource utiliza-
tion compared to n-bit �oating-point arithmetic (where m < n) [3]. RISC-V, an open
source Instruction Set Architecture (ISA) has been designed to support extensive cus-
tomization and specialization. The base integer ISA (RV32I ) can be further extended
with standard, reserved and custom instructions. The custom extension feature in
RISC-V ISA can be utilized to develop customized applications. Over the years, RISC-
V has gained acceptance leading towards its development in terms of both hardware
and software.

1.1 Motivation

The RISC-V ISA, today supports only two �oating-point standard extensions namely
F and D, which stands for single and double precision �oating-point extensions respec-
tively. The merits of novel Posit arithmetic over the IEEE-754 �oating-point arithmetic
gives ample motivation to incorporate a Posit compliant RISC-V ISA. A Posit enabled
RISC-V core can be developed through two approaches:

1. Posit integration as an accelerator by utilizing the custom opcode space of the
RISC-V ISA

2. Posit integration as a tightly coupled unit by replacing the F extension

The feasibility of these two approaches and the co-existence of the Posit and �oating-
point arithmetic needs to be investigated. Implementation of a Posit and IEEE-754
�oating-point compliant RISC-V core will escalate the acceptance of the processor in
a wide range of domains. The run-length encoding feature of Posit gives it an edge

1
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in comparison to the �oating-point arithmetic especially in applications concerning a
stringent requirement of higher dynamic range or precision. The outgrowth that the
unit under consideration is likely to bring about in �elds such as the machine learning,
arti�cial intelligence, big-data analytics etc., motivates me to work on the same.

1.2 Objectives

The objectives of the research are as listed below,

1. Design and implementation of the Posit unit

2. Incorporation of the Posit unit within the RISC-V core, thereby facilitating the
co-existence of the �oating-point and Posit arithmetic

3. A comparative study of Posit integration within the core pipeline and as an
accelerator in terms of resource utilization and timing requirements

4. Develop hardware to handle mixed operand types namely Posit, integer and �oats

5. Extend the RISC-V instruction set to add instructions meant to handle data type
casting

6. A comparative study of the data type casting approaches put forth

7. Develop recon�gurable Posit unit capable of switching between the maximum
exponent size (es) at runtime

1.3 Thesis organization

This thesis explores the development of a Posit compliant RISC-V processor and its
enhancement that can augment its acceptability in numerous applications. The thesis
organization is as follows,
Chapter 2 provides a brief background about the Posit arithmetic and the RISC-V
ISA. Chapter 3 deals with the literature survey and subsequent discussion on the re-
search gaps identi�ed. Chapter 4 elaborates on the research work that includes the
development of Posit arithmetic unit, the discussion on the analysis of optimum Posit
format < N, es >, approaches to incorporate Posit arithmetic into the RISC-V ISA,
implementation of data type casting, and the development of recon�gurable Posit unit.
Chapter 5 discusses the implementation results followed by conclusion of the present
work and the possibilities of future directions in Chapter 6.

M.TechR(VLSI Design), ECE, NITK, Surathkal 2



CHAPTER 2

BACKGROUND

This chapter discusses about the novel Posit arithmetic and the RISC-V open source
ISA in detail.

2.1 Posit format

A Posit number is denoted by the representation < N, es >, where N, es represents the
Posit word size and maximum exponent size respectively. The Posit arithmetic format
< N, es > is as shown in Figure 2.1. Similar to the �oating-point arithmetic, a 2's
complement notation is used for negative number representation.

Figure 2.1: < N, es > Posit arithmetic format

2.1.1 Posit �elds

Sign bit (S ): The MSB bit of the Posit number denotes the sign bit. S = 0, 1 represents
a positive and a negative number respectively.

Regime bits (rs) : The number of identical bits following the sign bit forms the
regime �eld. It may be a run of zeros followed by a one or vice versa. The regime bits
decide the variable K where,

K =

{
rs-1; if regime bits begin with one

-rs ; if regime bits begin with zero.
(2.1)

The K value contribute to the formation of total exponent value of a Posit number.
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Exponent bits (es) : The maximum number of exponent bits allowed is represented
by `es '. The variable size of the regime along with the constraint on the maximum
exponent size enables variability in the size of the exponent and fraction bits too. This
�exibility allows a Posit number to have even zero exponent bits. It is to be noted that
the regime and exponent bits together are used to evaluate the exponent value in Posit
as compared to �oating-point arithmetic, where regime bits are totally absent.

Fraction bits : The bits left after the exponent bits if any, forms the fraction �eld.
The fraction �eld is always preceded by an implied hidden bit, which is always one.
The variable `f ' denotes the fraction value.

Unlike the �oating-point arithmetic, Posit has only one representation of zero and
NaR (Not a Real) number each. This helps in the development of simpler, smaller and
faster circuits than by using IEEE-754 arithmetic.

The value of a Posit number X with the format < N, es > can be computed as
follows,

X =


0; if P=00...0

NaR; if P=10...0

(−1)s 22
esK

2e (1+f ); otherwise

(2.2)

The following examples demonstrate the value computation of a Posit number.
Eg.1: A < N, es >=< 8, 2 > Posit number 00001111 with �elds distinguished by un-
derscore is 0_0001_11_1, has Sign = 0, es = 2,
K = −rs = −3 (since regime begins with zero, K = −rs), e = 3 and f = 1/2

Posit Value = (−1)022
2−3

23(1 + 1/2)

Eg.2: A Posit number 10001111 having < N, es >=< 8, 3 > with �elds distin-
guished is 1_0001_111. Since the sign bit = 1, 2's complement needs to be taken.
The result 0_1110_001 has Sign = 0, es = 3, K = rs− 1 = 2 (regime begins with 1),
e = 1 and f = 0

Posit Value = −(−1)022
32

21(1 + 0)

It can be concluded from equation 2.2 that,

1. Smaller es results in higher precision and

2. Larger es results in higher dynamic range

Hence, it is possible to vary precision and dynamic range as per the requirements of
the user by manipulating the maximum exponent bits (es). This feature of the Posit
arithmetic gives it better acceptance compared to �oats.

2.2 RISC-V ISA

The RISC-V ISA mandates only the base extension (RV32I ). The base RISC-V is a
32-bit processor architecture with 31 general-purpose registers. All instructions are 32

M.TechR(VLSI Design), ECE, NITK, Surathkal 4
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bits long. The other optional standard extensions include M (Multiplication and divi-
sion), A (Atomic instructions), C (Compressed instruction), F (Single precision �oating
point instructions), etc.The F extension adds support for single-precision �oating-point
operations to the base RISC-V ISA. The F extension de�nes a set of �oating-point in-
structions and registers, as well as the behavior of the �oating-point unit (FPU). With
energy e�ciency as a concern, RISC-V ISA endeavors to maintain the base as well as
each standard extension constant over time and new instructions are layered as further
optional extensions, ie. regardless of the addition of non-standard extension, the base
integer extension continues to be fully supported. RISC-V ISA with 32-bit instruction
format supports four major custom opcodes. These custom opcodes have been reserved
to develop user speci�c applications. This feature of the ISA enables easy integration
of customized unit to the core.

M.TechR(VLSI Design), ECE, NITK, Surathkal 5



CHAPTER 3

LITERATURE SURVEY AND RESEARCH GAP

A study about the novel Posit arithmetic and the open-source RISC-V ISA is carried
out. The existing approaches for replacing the currently used IEEE-754 arithmetic
with Posit in RISC-V ISA is explored. Moreover, the feasibility and signi�cance of
Posit arithmetic is evaluated through a comparative performance analysis of Posit and
�oating-point arithmetic in relevant applications such as the self driving cars, weather
forecasting etc.

Manish Kumar Jaiswal and Hayden K. H. So (2019) [1] proposed algorithmic �ows,
pipelined architecture and open source parametrized Verilog HDL generator for Posit
arithmetic architectures pertaining to addition/subtraction, multiplication and divi-
sion.

Souradip Sarkar et al. (2019) [2] focused on performance analysis using a novel
recon�gurable hardware accelerator of Posit number format for signal processing algo-
rithms and performed comparison of Posit with IEEE-754 standard. They came to a
conclusion that the Posit number representation has a much larger dynamic range and
precision compared to the IEEE-754 standard for the same bit width. Additionally,
Posit is capable of providing signi�cant performance gain for algorithms in the physical
layer of communication systems.

Rohit Chaurasiya et al. (2018) [3] designed a completely parameterized area and
energy e�cient Posit arithmetic unit generator. They have experimentally demon-
strated that a n-bit IEEE-754 compliant adder/multiplier can be safely replaced with
a suitable m-bit Posit, where m < n. Additionally, the Posit arithmetic unit designed
is shown to consume less energy and area compared to the state-of-art realizations.
Both, synthesis for FPGA and ASIC are performed. The proposed posit arithmetic
adder/subtracter is implemented on a Zedboard with a Zynq-7000 SoC.

Sugantha Tiwari et al. (2019) [4] provided insights on the integration of Posit arith-
metic with RISC-V core. Two separate approaches were discussed for the Posit inte-
gration to the RISC-V core. The �rst approach leverages the standard `F' extension,
thereby enabling a quick bring up of the design. The second approach is by lever-
aging the custom opcode space of RISC-V ISA. The implementation and analysis of
both the approaches culminated in the inference that leveraging custom opcode space
approach needs to be undertaken to facilitate the co-existence of the �oating-point
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and Posit arithmetic. The Posit unit has been enhanced to support two es values,
thereby enabling dynamic switching between higher precision and dynamic range at
run time. They have also presented analysis of various software applications running
on the core that provides better performance in terms of quality as compared to IEEE-
754 standard. However the paper does not reveal the details of the implementation of
recon�gurability.

Arunkumar M. V. et al. (2020) [5] implemented and integrated a Posit Processing
Unit (PPU) into rocket chip SoC generator. A discussion on using the standard RISC-
V ISA `F' and `D' extensions for Posit arithmetic or utilizing the custom opcode space
for replacing IEEE-754 FPU with the Posit processing unit is done.

Junjie Hou et al. (2018) [6] researched on the FPGA implementation of Posit arith-
metic for extending �oating-point IP cores for FPGA based scienti�c data analytics.
Their work on < 32, 3 > type Posit and �oating-point single precision IP core lead
to the conclusion that Posit exhibits better superiority in representation and dynamic
range than IEEE-754 format. Furthermore, larger word size formats such as that with
64 and 128 bits were found to enhance the precision.

Riya Jain et al.(2020) [7] presented a consolidated general purpose processor based
framework consisting of melodica and clarinet. The melodica is a Posit arithmetic core
that implements parametric fused-multiply-accumulate and supports quire data type,
while clarinet is a melodica enabled processor based on RISC-V ISA. Their work claims
to be the �rst ever quire enabled RISC-V CPU.

Riaz-ul-haque Mian (2020) [8] developed an evolution framework for software-hardware
co-design solutions of decimal computation using the RISC-V ecosystem.

Macro Cococcioni et al. (2018) [9] discussed the introduction of an integrated Posit
processing unit (PPU) as an alternative to FPU for deep neural networks in automotive
applications. The study lead to the conclusion that implementing a PPU with the co-
processor is a promising way to speed up the DNN inference space.

Zachariah Carmichael et al. (2019) [10] proposed an exact multiply and accumulate
algorithm namely, deep Positron for accelerating ultra-low precision (<= 8−bit) DNNs
with Posit numerical format. They conducted experiments on deep Positron architec-
ture for multiple low-dimensional datasets and showed that 8-bit Posits achieve better
performance compared to their �xed and �oating-point counterparts.

Macro Cococcioni et al. (2021) [11] focused on reducing the number of bits needed
to represent the weights of DNNs using Posit number system. Moreover, the paper
exploits RISC-V vectorization to expedite the format encoding /decoding evaluation of
activation functions and performs the computation of core DNN matrix vector opera-
tions. It was inferred that the open source hardware platform like RISC-V along with
the open source DNN software implementations may enable a new class of completely
open DNN computing environments.

Milan Klower et al. (2019) [12] worked on trying to minimize word size of the
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weather forecast data from 32-bit to 16-bit. Research was carried out to compare the
rounding error between half precision �oats and 16-bit Posit format. Using the shallow
water (a standard forecast model) they concluded that < 16, 1 >/< 16, 2 > Posit had
more accuracy than 32-bit �oats. Further, they recommended < 16, 2 > Posit as the
standard format for weather and climate models.

The literature survey is summarized in Table 3.1.

Paper Contribution

Manish Kumar Jaiswal and Hayden K. H. So
(2019)

Proposed Posit arithmetic architecture for addi-
tion/subtraction, multiplication, division

Souradip Sarkar et al. (2019) Concluded that Posit has larger dynamic range and
precision compared to IEEE-754 standard

Rohit Chaurasiya et al. (2018) Designed a parameterized Posit arithmetic unit and
stated that n-bit IEEE-754 compliant adder/mul-
tiplier can be replaced with a m-bit Posit, where m
< n

Sugantha Tiwari et al. (2019) Proposed two approaches for integration of Posit
arithmetic with the RISC- V core and implemented
dynamic switching of es at run time

Arunkumar M. V. et al. (2020) Integrated a Posit Processing Unit into rocket chip
SoC generator

Junjie Hou et al. (2018) Concluded that larger word size Posit formats en-
hance the precision

Riya Jain et al.(2020) Presented Posit arithmetic core that implements
parametric fused-multiply-accumulate and sup-
ports quire data type

Riaz-ul-haque Mian (2020) Developed evolution framework for software-
hardware co-design solutions of decimal computa-
tion using the RISC-V ecosystem

Macro Cococcioni et al. (2018) Concluded that PPU with the co-processor speeds
up the DNN inference space

Zachariah Carmichael et al. (2019) Concluded that 8-bit Posits achieve better perfor-
mance compared to their �xed and �oating-point
counterparts

Macro Cococcioni et al. (2021) Reduced the number of bits needed to represent
the weights of DNNs using Posit number system
and expedited the format encoding /decoding eval-
uation of activation functions

Milan Klower et al. (2019) Concluded that < 16, 1 >/< 16, 2 > Posit has
more accuracy than 32-bit �oats and recommended
< 16, 2 > Posit as the standard format for weather
and climate models

Table 3.1: Literature summary

3.1 Research gap

From the above literature survey, the relevance and bene�ts of Posit over �oating-
point arithmetic is evident especially in applications demanding higher dynamic range,
precision and minimal error. Also, various approaches have been proposed for the inte-
gration of Posit with the open source RISC-V ISA. But in all the previous works, the
Posit functional unit is implemented as an accelerator and not within the core pipeline,
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which enables co-existence of the �oating and Posit arithmetic. Methods intended to
enable the co-existence of these arithmetic (�oating-point and Posit) within the core
needs to be investigated as this may contribute to a reduction in timing requirements
in contrast to the accelerator approach. The formulation of new instructions and devel-
opment of corresponding hardware to handle the mixed operand type (Integer, Float
and Posit) operations are highly desirable. Furthermore, the 32-bit Posit unit is en-
hanced to support two di�erent exponent sizes with minimum overheads compared to
the existing method. This enables run-time switching between higher dynamic range
and precision in accordance with the application being dealt with.
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CHAPTER 4

POSIT ENHANCED RISC-V ISA

The work presents the e�orts undertaken for the realization of Posit enhanced RISC-V
ISA. Additionally, hardware innovations capable of bolstering the e�cacy of the unit
(Posit enhanced RISC-V core) developed is explored.

4.1 Development of posit arithmetic unit

This section discusses about the development of Posit unit capable of performing ele-
mentary arithmetic operations such as addition/subtraction, multiplication and divi-
sion. A parameterized unit that handles any Posit size `N ' and exponent size `es ' is as
shown in Figure 4.1. The block diagram of basic Posit arithmetic �ow is depicted in
Figure 4.2.

Figure 4.1: Parametrized data �ow for <N,es> Posit format

4.1.1 Posit decoder

A Verilog HDL code with parametrized inputs as Posit word size (N ), Posit exponent
size (es), regime value storage size (rs) and two N -bit operands (A, B) is developed.
Initially, the algorithm checks for two exceptional cases (0 and in�nity). A Posit input
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Figure 4.2: Posit arithmetic block diagram

with all N -bit zero's depicts an exception of zero while, all bits zero except the MSB bit
forms Posit in�nity representation. The exceptions are fed to the subsequent blocks to
ensure that the arithmetic operations takes care of these exceptions during arithmetic
computation. The exception check is followed by the extraction of four �elds in the
Posit format namely sign, regime, exponent and fraction. The decoder block then
outputs the four �elds of the inputs A and B. The algorithm of the Posit extraction
block is as shown in the Figure 4.3.

Figure 4.3: Posit decoder algorithm
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4.1.2 Posit arithmetic processing

The sign, regime, exponent and fraction �elds so obtained are fed to a demux intended
to route the data into appropriate computational blocks (adder/subtractor, multiplier
and divider) based on the arithmetic operation signal OP. The operational �ow of
various arithmetic blocks are discussed.

Posit adder/subtractor

The adder identi�es the large and the small operands among the inputs, A and B. After
comparison, the operands are swapped if necessary to ensure that A and B denotes
the large and the small operands respectively. This is followed by the computation of
sign, regime, exponent and fraction of the result which are then fed to the encoder for
�nal processing. The algorithm of Posit adder is presented in Figure 4.4. The Posit
subtractor block follows exactly the same �ow as that of Posit adder except that 2's
complement of the operand B is performed before the arithmetic computation.

Figure 4.4: Algorithm of Posit adder/subtractor

Posit multiplier

The Posit multiplication is implemented in accordance to the algorithm developed and
implemented by Manish Kumar Jaiswal and Hayden K. H. So (2019) [1]. The fraction
and exponent �elds of the result are obtained by direct multiplication and addition of
the fraction and exponent of the operands respectively. The normalization of result
fraction and exponent is done based on the carry obtained in the result fraction and
exponent computation. The MSB of the regime �eld (Result_reg_S ) and the number
of bit repetition before the �rst complement bit (Result_reg_N ) after Result_reg_S
are also routed to the Posit encoder. Finally, sign of the result is obtained by XORing
the operand signs. The algorithm of Posit multiplier is shown in Figure 4.5 .
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Figure 4.5: Algorithm of Posit multiplier

Posit division block

The Posit division is implemented in accordance to the algorithm developed and im-
plemented by Manish Kumar Jaiswal and Hayden K. H. So (2019) [1]. The algorithm
of Posit division operation is presented in Figure 4.6. The fraction of the result is
obtained by dividing the fraction �elds of the operands. Likewise, the result exponent
is computed by subtracting the operand exponents. The Result_reg_S, Result_reg_N,
and Result_sign are also computed.

Figure 4.6: Algorithm of Posit division block

Finally, the result �elds such as result sign, regime sign and number, exponent
and fraction from each of the three arithmetic computational block are fed to a mul-
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tiplexer to be appropriately routed to the Posit encoder based on the operation (OP)
undertaken.

4.1.3 Posit encoder

The Posit encoder algorithm is concerned with the construction, rounding and �nal
processing of the Posit result as presented in Figure 4.7. The regime, exponent and
fraction obtained as input is packed into a variable named REF. Additionally, three
zeros are also appended to the REF to serve as guard, round and sticky bit. The
REF thus obtained is right shifted Result_reg_N times and vacant part of MSB is
�lled with Result_reg_S. Further, rounding is carried out depending on the value of
Result_reg_N. Finally, the result sign is appended to REF and the MSB N -bits form
the �nal output, after taking care of the exceptions (zero and in�nity). This meets the
�rst objective of the design and implementation of the Posit unit.

Figure 4.7: Algorithm of Posit encoder

4.2 Application speci�c discussion on analysis of op-

timum value of parameters < N, es >

The requirement of the dynamic range and precision varies with application. The
Posit arithmetic caters to this varying demand and therefore beats �oats. Hence the
optimal < N, es > is exclusively dependent on the application concerned. This section
discusses a few relevant applications based on Gustafson J. and Yonemoto I. (2017) [13]
and generalizes their optimal < N, es >.

4.2.1 Big data analytics

The big data analytics deals with the real time processing of data strictly within certain
time constrains. The requirement of large data size and the speed or throughput opti-
mization are the major parameters of concern. Therefore, big data analytics demands
large dynamic range and precision too. The constraints on the < N, es > is depicted
in Table 4.1. It can be inferred from the table that, the optimal Posit format for big
data analytics is < 32, 3 >.
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Constraints Reason

N < 32 Lower dynamic range
N > 32 Memory word size constraint
es < 3 Lower dynamic range
es > 3 Lower precision

Table 4.1: Constraints on < N, es > Posit format for big data analytics

4.2.2 Audio processing

Consider an audio clip with sample rate of 44.1KHz and a bu�er size of 4096 frames.
It was observed that processing with < 8, 0 > Posit format gives a 5% improvement
in precision compared to processing with < 8, 3 > Posit. Hence, 0 < es < 3 and more
closer to zero is preferred for audio processing applications.

4.2.3 Machine learning applications

Machine learning applications are also found to have substantial bene�ts through Posit
integration. Deep neural networks such as autonomous driving applications demon-
strated that a Posit unit with < N,es >=< 8, 0 > within the co-processor speeds up
the inference phase instead of quantization. Another instance of deep learning is the
approximation of sigmoid function f(x) = 1

1+e−x using Posits. The approximation is
done by simply �ipping the MSB followed by a right shift of two times.
Eg.: If Posit Number= 8′b10110000
then f(x) = 1

1+e−x = 8′b00001100

Consider a neural network to evaluate the boolean formula on a vector of ten vari-
ables. Eg.: f(v) = v[1](v[3]& v[4]). The comparison to the actual results illustrated an
accuracy of 98% and 56% for Posit < 8, 0 > and < 16, 0 > respectively. Also es = 0 is
desired as the application here urges for precision.

4.2.4 Generalization

Generally, the standard Posit con�guration used for single precision and double preci-
sion instruction format is < 32, 2 > and < 64, 3 > respectively. Hence, the exponent
size for single precision format lies between 0 and 2, and that for the double precision
format varies between 0 and 3 depending on the regime. Additionally, a study of var-
ious < N, es > Posit formats for basic arithmetic operations were undertaken. It was
concluded that the latency of a particular arithmetic computation is independent of
the < N, es >, while the maximum register width depends on both N and es. The
results of the analysis are depicted in Table 4.2 and 4.3. For an N -bit Posit, the max-
imum fraction �eld size is (N − es− 3). Among the basic Posit arithmetic operations,
multiplication demands the maximum fraction �eld size. The maximum register �eld
size of the fraction �eld in case of multiplication is 2 ∗ (N − es− 3)− 1. The maximum
register width refers to the combined �eld size for di�erent Posit �elds, ie., maximum
register width = (maximum fraction register width) +1 (sign bit) +es (maximum
exponent field size) + 2 (minimum regime field width).
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Posit Format Latency
< N, es >

< 8, 2 > 8
< 8, 3 > 8
< 16, 2 > 8
< 16, 3 > 8
< 32, 2 > 8
< 32, 3 > 8

Table 4.2: Analysis of latency for various < N, es > Posit formats for Posit multipli-
cation

Posit Format Maximum Fraction Field Maximum Register Width
< N, es > Register Width

< 8, 2 > 5 10
< 8, 3 > 3 9
< 16, 2 > 21 26
< 16, 3 > 19 25
< 32, 2 > 53 58
< 32, 3 > 51 57

Table 4.3: Analysis of maximum register width for various < N, es > Posit formats for
Posit multiplication

4.3 Approaches to enhance RISC-V ISA (RV32IMF )
with posit arithmetic

The integration of Posit arithmetic to the RISC-V ISA can be facilitated through three
separate approaches. The �rst approach deals with Posit integration within the core by
replacing the standard F extension. This approach does not support the co-existence of
the �oating-point and Posit arithmetic. The second approach of Posit incorporation is
as an accelerator by utilizing the custom opcode space in RISC-V ISA using a standard
co-processor interface. The third approach is similar to that of the �rst approach in
terms of its location, ie. as a tightly coupled unit to the core, but e�orts are made
to enable the co-existence of the �oating-point and the Posit arithmetic. This section
describes each of these approaches in detail.

4.3.1 Approach 1: Posit integration as a tightly coupled unit

by replacing the standard F extension

This approach enables Posit integration within the core. Here, the Posit instructions
are incorporated by replacing the standard F extension of the RISC-V ISA. The in-
struction encoding remains the same. The Posit unit, similar to the �oating-point
maintains a separate register bank with 32 (P0− P31) registers along with a Control
and Status Register (CSR). The Posit CSR (PCSR) is designed with slight modi�-
cation to its �oat counterpart. The �oat and Posit CSR is juxtaposed in Figure 4.8
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and 4.9 respectively to illustrate the modi�cations brought about. The PCSR di�ers
from FCSR in the requirement of es-mode �eld and absence of �ags expect the Division
by Zero (DZ) �ag. Hence, the PCSR[3] is reserved for DZ �ag and �ve bits of the PCSR
(PCSR[5:4,2:0]) can be used for es �eld. Similar to the F extension, we consider 32-bit
Posit and expects the requirement of only �ve bits for es in all applications. The Posit
number �eld extractions are in accordance to the es value. Unlike �oats, that supports
multiple rounding modes, Posit supports only round to nearest, ties to even rounding
mode depicted with PCSR[7:6] which is hence always set to zero. The reserved �eld
PCSR[31:8] is kept intact.

Figure 4.8: Floating-point Control and Status Register (FCSR)

Figure 4.9: Posit Control and Status Register (PCSR)

4.3.2 Approach 2: Posit integration as an accelerator by utiliz-

ing the custom opcode space in RISC-V ISA

This approach supports more versatile instructions compared to the previous approach.
Here, the Posit unit is integrated as an accelerator and no modi�cations are needed in
the core. An accelerator can be de�ned as a separate architectural substructure (on a
di�erent die or on the same chip) that is designed using a di�erent set of objectives than
the base processor, where these objectives are derived from the requirements of a special
group of applications. The integration is made possible through utilization of a standard
co-processor interface. This approach facilitates the co-existence of Posit and �oating-
point arithmetic in contrast to approach 1 (Section 4.3.1) in which, Posit stays as a
tightly coupled unit to the core. The RISC-V ISA o�ers custom 0/1/2/3 opcode space
exclusively for the development of application speci�c non-standard extensions. This
feature can be leveraged for development of the Posit co-processor unit. A standard co-
processor interface namely, Rocket Custom Co-processor (RoCC) is used as an interface
here.

RoCC: Rocket Custom Co-processor

The RoCC follows a standard instruction format that enables two source and one
destination register values to be passed to and from the accelerator respectively. The
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Posit instructions uniquely identi�ed by using the custom opcode assigned to it is
passed to the Posit accelerator. The standard RoCC instruction encoding is as shown
in Figure 4.10. The rs1, rs2 and rd represents the source and destination register
values respectively. The xd, xs1 and xs2 selects between the Posit and the base integer
register banks, which is presented in Table 4.4. The RISC-V 32 bit instruction type
used in RV32IF and its equivalent mappings to RoCC instruction format is presented
in Figure 4.11 and 4.12 respectively.

Figure 4.10: Standard RoCC instruction encoding

Instruction Handling xs1 xs2 xd
Processor

RISC-V Core Processor 1 1 1
Posit Co-Processor 0 0 0

Table 4.4: RoCC interface selection between integer and posit data

Figure 4.11: RV32I instruction mapping to RV32IF

Figure 4.12: Mapping of RV32IF to RoCC standard instruction format

The Posit accelerator

The Posit accelerator architecture is presented in Figure 4.13. The co-processor is
designed by the addition of Posit register bank to the Posit block as described in Sec-
tion 4.1. The Posit accelerator receives two source registers along with the Instruction
Register (IR) as inputs. The inputs to the Posit decoder is selected between the in-
teger register and Posit register values depending on the values of xs1 and xs2. The
�nal Posit result is written back to the destination register of the Posit register bank
if xd = 1 else, it is written to the integer destination register in the core.
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Figure 4.13: Posit accelerator architecture

Simulation results and resource utilization

The code is implemented on Xilinx ARTIX-7 FPGA (xc7a100tcsg324-1). The simula-
tion results of Posit adder, multiplier and the division block within the Posit accelerator
for < 32, 2 > is as per Figure 4.14, 4.15 and 4.16 respectively. The number of clock cy-
cles for Posit addition, multiplication and division are as in Table 4.5. The correctness
of the arithmetic computation is validated using standard Posit calculator. Resource
utilization for basic arithmetic units within the Posit accelerator for < 32, 2 > and
< 32, 3 > are presented in Table 4.6 and 4.7.

Figure 4.14: Posit adder simulation
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Figure 4.15: Posit multiplier simulation

Figure 4.16: Posit division block simulation

Operation Clock cycles

ADD/SUB 5
MUL 8
DIV 12

Table 4.5: Number of clock cycles for Posit arithmetic operations

Module es = 2 es = 3

ADD/SUB 722 704
MUL 798 765
DIV 869 813

Table 4.6: LUT utilization for arithmetic units within Posit accelerator for N = 32-bits
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Module es = 2 es = 3

ADD/SUB 38 35
MUL 46 43
DIV 51 47

Table 4.7: Flip-Flop utilization for arithmetic units within Posit accelerator forN = 32-
bits

4.3.3 Approach 3: Posit integration as a tightly coupled unit

using custom opcode space without replacing the stan-

dard F extension

Approach 3 aims to develop a RV32IMF_XPosit unit, which incorporates Integer (I),
Integer Multiplication and Division (M), Floating-point (F) and Posit extensions within
the core. This circumvents the requirement of an accelerator exclusively for Posit
arithmetic. Approach 3 is more attractive compared to approach 1 (Section 4.3.1)
in terms of co-existence of Posit and �oating-point arithmetic. This approach in-fact
speeds up the computation as the instruction is fed to the Posit unit at the execute stage
instead of the write-back stage as in case when Posit is integrated as an accelerator
(approach 2). The advantage in terms of speed for approach 3 can be attributed to the
elimination of the stalling of Posit instructions for the last two stages (memory and
write-back stage) as in approach 2 (Section 4.3.2). An illustration of the RISC-V core
with the Posit and �oating-point units are presented in Figure 4.17. The Posit extension
is incorporated by replacing the opcode space of the standard F extension with custom
opcode as demonstrated in Figure 4.18 and 4.19 respectively. Here, custom-0 opcode
is selected to uniquely identify the Posit instructions. The architecture of the Posit
and the �oating-point unit that supports basic arithmetic operations are presented in
Figure 4.20 and 4.21 respectively. This meets the second objective of the incorporation
of the Posit unit within the RISC-V core, thereby facilitating the co-existence of the
�oating-point and Posit arithmetic.

Figure 4.17: RISC-V core with Posit and �oating-point blocks
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Figure 4.18: RISC-V 32 bit instruction format used for RV32IF

Figure 4.19: RISC-V 32 bit instruction format used for RV32IF_XPosit

Figure 4.20: Architecture of Posit arithmetic unit within RISC-V core

Figure 4.21: Architecture of �oating-point arithmetic unit within RISC-V core
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4.4 Implementation of data type casting in

RV32IMF_XPosit

The RV32IMF_XPosit processor developed contains a �oating-point and a Posit block
with separate register banks within the core. Each of the FPU and Posit block can
access the integer register bank and perform necessary computations. But no e�orts
were taken up to deal instructions with mixed operand types. Hence, implementing data
type casting in hardware can be an e�cient method to address this issue. Data type
casting can be implemented through two di�erent approaches. This section describes
these approaches in detail.

4.4.1 MOT: Mixed Operand Type block

The MOT block is designed to handle instructions meant to perform arithmetic op-
erations involving mixed operand types. The block converts data type of the source
operands to that of the destination operand type and routes it to the appropriate desti-
nation functional unit for performing the necessary operation. For instance, the MOT
block handles an operation F6 = P2 + I5 by converting all the source types (Posit
and Integer) to destination type (Float) before addition. The computational �ow of
the instruction is as follows.
P2 → F Type; I5 → F Type; F6 = (P2 → F ) + (I5 → F )
Here, after converting the source operands to �oat data type, the converted operands
are then routed to the FPU for addition. The result of the �oating-point addition is
then written back to the destination register in the �oat register bank.

MOT instruction format

The MOT block handles only R-type instructions having two source and a destination
register as operands. The MOT instruction format is presented in Figure 4.22. The
block gets activated using a custom opcode. The data type of the operand is iden-
ti�ed by two bits, speci�cally `01' for integer, `10' for �oat and `11' for Posit. From
the instruction, the destination type (xd) and the two source types (xs1 and xs2 ) are
{IR[31],IR[14]}, {IR[30],IR[13]} and {IR[29],IR[12]} respectively. Similarly, two source
and the destination registers are denoted by IR[24:20], IR[19:15] and IR[11:7] respec-
tively. The IR[28:25] �eld (funct4 ) speci�es the type of the operation to be executed.

Figure 4.22: MOT instruction format

MOT block architecture

The architecture of the MOT block is depicted in Figure 4.23. The MOT block receives
the source operands from all the three register banks, namely Integer, Float and Posit.
The multiplexer at the initial stage selects the source operands depending on the value
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Figure 4.23: MOT block architecture

of xs1 and xs2. The second stage demultiplexer checks if the source and the destination
data type are di�erent and decides whether a conversion is required. The operands are
then routed to the appropriate conversion block if needed. The converted operands of
the destination type is then routed to the appropriate functional block (Integer ALU,
Posit or Float block) depending on the xd value.

Integration of MOT block to the RISC-V core

The illustration of the MOT block integrated RV32IMF_XPosit is presented in Figure
4.24. The separation of the register banks from the respective functional units is the
major change in the MOT integrated core. The inputs to the Float, Posit and the
Integer arithmetic block is routed from the MOT block in case of a mixed operand
type instruction otherwise, it is directly fed from the respective register banks.

Figure 4.24: MOT block integrated RISC-V core
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4.4.2 DTC: Data Type Converter block

Unlike the MOT block, the DTC block do not handle instructions involving arithmetic
computation. It is solely designed for data type conversion from one to the other. The
DTC block converts the source type operand to that of destination type and writes
back the converted value into the destination register bank.

DTC instruction format

The DTC block handles instructions with a single source and a destination as operands.
DTC block is also uniquely identi�ed using a custom opcode. The DTC instruction
format is presented in Figure 4.25. From the instruction, the destination type (xd)
and the source type (xs) can be obtained form IR[23:22] and IR[21:20] respectively.
The introduction of these data type casting instructions satis�es the �fth objective of
the thesis.

Figure 4.25: DTC instruction format

DTC block architecture

The architecture of the DTC block is depicted in Figure 4.26. The initial multiplexer
selects the source operand depending on the xs value, which is then routed to the
appropriate conversion block if needed. The result obtained is written back to the
destination register bank decided by xd.

Figure 4.26: DTC block architecture
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Figure 4.27: DTC block integrated RISC-V core

Integration of DTC block to the RISC-V core

The DTC block integrated RV32IMF_XPosit is presented in Figure 4.27. Similar to the
MOT block, the DTC also demands the separation of the Posit and �oat register banks
from their respective functional units. This meets the fourth objective of developing
hardware to handle mixed operand types namely Posit, integer and �oats.

4.5 Recon�gurable posit unit

The Posit unit developed is further enhanced to support multiple es values. This fea-
ture in-fact fully leverages the capability of a Posit number to o�er better dynamic
range and precision for higher and lower es values respectively. The possibility of dy-
namic switching between di�erent es values at run-time will improve the acceptability
of the Posit arithmetic in many relevant applications. Here, a parametrized recon�g-
urable Posit unit is designed to support es = 2 and es = 3 for a �xed Posit word size
of N = 32-bits.

This implementation requires minimal modi�cation in the decoder, encoder and
the arithmetic units. The changes in the units within the Posit block are as described.
The two es values are declared as parameters as es_A = 2 and es_B = 3. The es
is obtained as input, which can be either 2 or 3. The register widths of the exponent
and the fraction �elds fed as the output of the decoder is designed for maximum width
requirement among the possible es values. The exponent register is de�ned with respect
to the maximum es value, ie. es_B. The MSB is sign extended when es is es_A.
However, in case of the fraction �eld, the register width is de�ned with respect to the
smallest exponent value (es_A) since the width of the register is bound as [word_size−
es − 3 : 0]. For N = 32-bits, the exponent and the fraction registers are depicted as
Figure 4.28 and 4.29 respectively. The sign extended bits are represented in blue in the
�gures.
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Figure 4.28: Exponent register in recon�gurable Posit unit

Figure 4.29: Fraction register in recon�gurable Posit unit

Similarly, the exponent and the fraction �eld registers within the arithmetic units
(adder/subtractor, multiplier and the division block) are also designed with maximum
register width to accommodate multiple es values. Furthermore, corresponding mod-
i�cations have been incorporated in the encoder stage of the Posit unit. This meets
objective seven of developing a recon�gurable Posit unit capable of switching between
the maximum exponent size (es) at runtime.

4.5.1 Simulation and resource utilization

The simulation of recon�gurable Posit unit is as depicted in Figure 4.30. The simulation
represents the Posit result for two separate es values (two and three). The operation
performed is that of Posit addition between two register operands.

Figure 4.30: Simulation of recon�gurable Posit unit

Posit module LUT (es = 2) LUT (es = 3) LUT (es = 2, 3)

Decoder 399 402 410
Arithmetic Block 1468 1485 1608

Encoder 101 103 104

Table 4.8: LUT comparison between Posit (es = 2), Posit (es = 3) and Posit (es = 2, 3)
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Posit module FF (es = 2) FF (es = 3) FF (es = 2, 3)

Decoder 56 56 58
Arithmetic Block 72 75 77

Encoder 32 33 35

Table 4.9: Flip-Flop comparison between Posit (es = 2), Posit (es = 3) and Posit
(es = 2, 3)

The resource utilization for the recon�gurable Posit unit (es = 2, 3) and that of
non-recon�gurable unit (es = 2), (es = 3) is shown in Table 4.8 and 4.9. It is
observed that the recon�gurable unit requires nearly 8% more LUTs and 6% more
FFs as opposed to the non-recon�gurable Posit block with es = 2. It is to be noted
that the previous works [4] of incorporating dynamic switching into the Posit block
takes around 15% more LUTs and 8% more FFs. Hence, a saving of 7% and 2% in
LUTs and FFs respectively are achieved using the proposed approach of implementing
recon�gurability.
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CHAPTER 5

IMPLEMENTATION RESULTS

Verilog HDL and RTL coding was used to implement the proposed hardware. The code
was implemented on a commercial grade Xilinx ARTIX-7 FPGA (xc7a100tcsg324-1)
using the Xilinx Vivado tool while, capable of operating at 100MHz. The results
include comparison of the resource utilization and timing requirements of various Posit
integration and data type casting approaches. The processor developed works only in
user mode. The instructions supported are presented in Appendix A .

5.1 Area and speed comparison of various posit ex-

tended RISC-V cores

The Table 5.1 illustrates the clock cycles per instruction for various Posit extended
RISC-V cores di�ering in terms of Posit integration method and co-existence with the
IEEE-754 standard. It is found that Posit as an accelerator consumes two additional
clock cycles compared to the proposed approach wherein, Posit arithmetic is integrated
as a tightly coupled unit along with its �oating-point counterpart. Therefore the novel
approach is capable of overcoming both the drawbacks of the existing approaches and
can therefore be considered as the most e�ective method of Posit integration to the
processor. The Table 5.2 illustrates the resource utilization for the three approaches
(4.3.1, 4.3.2 and 4.3.3) of Posit integration as discussed in Section 4.3. It can be
noted that though approach 4.3.1 utilizes lesser resources compared to both approaches
4.3.2 and 4.3.3 of Posit integration, F extension is fully replaced in this case. Hence,
among the remaining approaches, the proposed approach (4.3.3) is preferred over the
accelerator (4.3.2) in terms of the area requirement. This meets the third objective of
presenting a comparative study of Posit integration within the core pipeline and as an
accelerator in terms of resource utilization and timing requirements.

Posit Co-existence with Clock Cycles/
Integration �oating-point Instruction

Arithmetic

Tightly Coupled No 8
Accelerator Yes 12

Tightly Coupled Yes 10

Table 5.1: Timing requirement analysis of various Posit integration approaches
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Posit Co-existance with LUT FF
Integration �oating-point Count Count

Arithmetic

Tightly Coupled No 1535 811
Accelerator Yes 3931 1304

Tightly Coupled Yes 3642 1103

Table 5.2: Resource utilization analysis of various Posit integration approaches

5.2 Resource utilization and timing requirement anal-

ysis of data type casting approaches

The performance analysis of the two data type casting approaches are undertaken.
The comparison of the MOT and the DTC block integrated Posit enhanced RISC-V
core in terms of area is as presented in Table 5.3. It is found that the DTC block
approach occupies 31% and 14% lesser LUTs and FFs respectively compared to the
MOT approach.

Data type casting LUT LUTRAM FF DSP BUFG
approach

MOT 10448 128 1183 15 12
DTC 7185 110 1009 12 4

Table 5.3: Resource utilization analysis of the data type casting approaches

Operation Destination MOT DTC
Data Type

Addition

Float 0.18 0.17
Posit 0.28 0.18
Integer 0.2 0.31

Multiplication
Float 0.27 0.26
Posit 0.2 0.18
Integer 0.10 0.38

Division

Float 0.28 0.21
Posit 0.24 0.22
Integer 0.28 0.38

Table 5.4: Timing requirement analysis of the data type casting approaches (in µs)

The timing requirements (in µs) of the data type casting approaches for basic arith-
metic operations involving mixed operand types are as presented in Table 5.4. The
table is a subset of all the possible arithmetic operations involving various data types
and only includes instructions handling all the three data types. For instance, the �rst
row of the table indicates that the MOT block approach can perform an arithmetic
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operation such as F6 = P2 + I5 in 0.1805µs. However, the DTC block takes only
0.1715µs for the same instruction. The time taken by the DTC block approach is the
sum of the time taken for the conversion of all the source data types to that of the
destination type and �nally to carry out the arithmetic operation. The time taken for
conversion between di�erent data types are tabulated in Table 5.5. It is inferred that in
terms of the time taken for an operation, the DTC block approach of data type casting
is always preferred over the MOT method except when the destination data type is
that of an integer. This satis�es the sixth objective of presenting a comparative study
of the data type casting approaches put forth.

Source Data Type Destination Data Type Conversion Time

Integer Float 0.03
Integer Posit 0.06
Float Integer 0.1
Float Posit 0.02
Posit Integer 0.14
Posit Float 0.05

Table 5.5: Time taken for conversion between data types (in µs)

5.3 Power summary

The distribution of the power dissipation is as tabulated in Table 5.6. The implementa-
tion resulted in a dynamic power dissipation of 0.225W and static power dissipation of
0.098W. The power dissipation is analyzed by loading the set of instructions supported
by the Posit enhanced RISC-V processor listed in the appendix section.

Total On-Chip Power (W) 0.323
Dynamic (W) 0.225

Device Static (W) 0.098

Table 5.6: Power analysis
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CHAPTER 6

CONCLUSION & FUTURE DIRECTIONS

6.1 Conclusion

Posit is a novel arithmetic that is capable of surmounting the shortcomings of the widely
used IEEE-754 standard. A fully parametrized Posit arithmetic core generator for ba-
sic arithmetic computations such as addition/subtraction, multiplication and division
is developed. Posit arithmetic caters to the varying requirement of dynamic range and
precision in signi�cant domains. An analysis of the favorable < N, es > for applications
such as machine learning, audio processing and big data analytics are performed. The
commendable bene�ts obtained through Posit utilization in these domains need to be
extended to other applications too.

The RISC-V, an open source ISA is enhanced by supporting Posit arithmetic. Var-
ious approaches for the Posit implementation in the ISA is proposed. A comparative
study of the approaches in terms of timing and resource utilization are also under-
taken. The proposed method of Posit integration to the RISC-V core is better in terms
of speed compared to the existing accelerator approach. It also allows co-existence of
the �oating-point and Posit arithmetic unlike when Posit is implemented as an execu-
tion unit within the core by replacing the FPU. Furthermore, addition of features that
complement compatibility are vital for the acceptability of the Posit extended RISC-V
core in various applications. To that extend, hardware unit to implement data type
casting is incorporated into the processor. This complements the concurrent use of
integer, �oating and Posit arithmetic within the processor.

Data type casting block allows the conversion of the �oating-point operands into
Posit which will in turn allow easy porting to the new arithmetic. Moreover, this feature
eliminates the need for rewriting the existing code with the �oating-point arithmetic.
In addition to that, this hardware innovation supports instructions for carrying out
arithmetic operations involving mixed operand types. Di�erent approaches for data
type conversion are put forth and compared based on the resource utilization and the
timing requirements for few mixed operand instructions. It is inferred that the selection
of the data type casting approach depends on the destination data type of the operand.
In terms of the timing requirements, the DTC block is preferred to the MOT block
except for arithmetic instructions involving integer destination operand. However, the
DTC block integrated RISC-V core occupies signi�cantly lesser resources compared to
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the MOT block integrated core.

Furthermore, the Posit unit is enhanced to facilitate dynamic switching between
two di�erent es values with minimal overheads. Since this add-on allows easy transi-
tion from higher dynamic range mode to that of higher precision mode, the usage of
the Posit arithmetic is likely to be promoted over the �oating-point in multiple do-
mains. The enhancement is brought about by con�guring the register widths of the
exponent and the fraction �elds to accommodate both the es values. An increase in
area utilization of nearly 8% in LUTs and 6% in FFs are observed in comparison with
the non-recon�gurable Posit block with es = 2.

6.2 Future directions

The existing design can be further extended in the following ways:

1. The Posit unit be further recon�gured to accommodate many es values, which
can improve the acceptability of the arithmetic.

2. The Posit enhanced processor can be used in disciplines such as defence, remote
sensing etc. and performance be evaluated.
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Appendix A

RV32IMF_XPosit Processor

This chapter presents the instructions supported by RV32IM_XPosit processor and
the simulation results of various instruction types.

A.1 RV32IMF_XPosit processor instruction set

The RV32IMF_XPosit processor is developed to support a subset of instructions
within standard extensions such as Integer (I), Integer Multiplication and Division
(M), �oating-point (F) and non-standard extensions such as Posit, MOB or DTC ex-
tension. The RV32IMF_XMOB_XPosit and RV32IMF_XDTC_XPosit processor is
designed to operate only in user mode. The standard instructions are as listed in Table
A.1. The non-standard instructions for Posit, MOT and the DTC approach are listed
separately in Table A.2, A.3 and A.4 respectively.

Extension Function 31 25 24 20 19 15 14 12 11 7 6 0

I ADD 0000000 rs2 rs1 000 rd 0110011
I SUB 0100000 rs2 rs1 000 rd 0110011
I OR 0000000 rs2 rs1 110 rd 0110011
I AND 0000000 rs2 rs1 111 rd 0110011
I XOR 0000000 rs2 rs1 100 rd 0110011
M MUL 0000001 rs2 rs1 000 rd 0110011
M DIV 0000001 rs2 rs1 100 rd 0110011
I ADDI Imm[11:0] rs1 000 rd 0010011
I XORI Imm[11:0] rs1 100 rd 0010011
I LW Imm[11:0] rs1 010 rd 0000011
I SW Imm[11:5] rs2 rs1 010 Imm[4:0] 0100011
I BEQ Imm[12|10:5] rs2 rs1 000 Imm[4:1|11] 1100011
I BNE Imm[12|10:5] rs2 rs1 001 Imm[4:1|11] 1100011
F FADD.S 0000000 rs2 rs1 rm rd 1010011
F FMUL.S 0001000 rs2 rs1 rm rd 1010011
F FDIV.S 0001100 rs2 rs1 rm rd 1010011

Table A.1: Standard RV32IMF instructions
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Extension Function 31 25 24 20 19 15 14 12 11 7 6 0

Posit PADD.S 0000000 rs2 rs1 000 rd 0001011
Posit PMUL.S 0100000 rs2 rs1 000 rd 0001011
Posit PDIV.S 0000000 rs2 rs1 110 rd 0001011

Table A.2: Non-standard Posit instructions

Extension Function 31 29 28 25 24 20 19 15 14 12 11 7 6 0

MOB ADD xd[1]xs1[1]xs2[1] 0000 rs2 rs1 xd[0]xs1[0]xs2[0] rd 0101011
MOB MUL xd[1]xs1[1]xs2[1] 1000 rs2 rs1 xd[0]xs1[0]xs2[0] rd 0101011
MOB DIV xd[1]xs1[1]xs2[1] 1100 rs2 rs1 xd[0]xs1[0]xs2[0] rd 0101011

Table A.3: Non-standard MOB instructions

Extension Function 31 24 23 20 19 15 14 12 11 7 6 0

DTC Data Conversion 00000000 xd[1]xd[0xs[1]xs[0] rs 000 rd 0101011

Table A.4: Non-standard DTC instruction

A.2 Simulation results

A.2.1 Stand-alone arithmetic instructions

Integer instructions

Instruction No Operation Implemented Machine Instruction

1 ADDI R1, R0, 10 00A00093
2 ADD R4,R1,R2 00208233
3 SUB R6,R5,R1 40128333
4 OR R7,R3,R2 0021E3b3
5 XORI R10,R3,49 0311C513

Table A.5: Integer stand-alone test instructions

Figure A.1: Simulation of integer stand-alone test instructions
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Floating-point instructions

Instruction No Operation Implemented Machine Instruction

1 FADD.S R3,R2,R1 001101D3
2 FMUL.S R3,R2,R1 101101D3
3 FDIV.S R3,R2,R1 181101D3

Table A.6: Floating-point stand-alone test instructions

Figure A.2: Simulation of �oating-point stand-alone test instructions

Posit instructions

Instruction No Operation Implemented Machine Instruction

1 PADD PR3,PR2,PR1 0011018B
2 PMUL PR5,PR2,PR1 1011028B
3 PDIV PR7,PR2,PR1 1811038B

Table A.7: Posit stand-alone test instructions

Figure A.3: Simulation of Posit stand-alone test instructions
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A.2.2 Mixed arithmetic instructions

Mixed arithmetic addition instruction

Instruction No Operation Implemented Machine Instruction

1 F6 = P2 + I5 C051332B
2 P6 = F2 + I5 C051532B
3 I6 = P2 + F5 6051632B

Table A.8: Mixed addition test instructions

Figure A.4: Simulation of mixed arithmetic addition test instructions

Mixed arithmetic multiplication instruction

Instruction No Operation Implemented Machine Instruction

1 F6 = P2 ∗ I5 D051332B
2 P6 = F2 ∗ I5 D051532B
3 I6 = P2 ∗ F5 7051632B

Table A.9: Mixed arithmetic multiplication test instructions
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Figure A.5: Simulation of mixed multiplication test instructions

Mixed arithmetic division instructions

Instruction No Operation Implemented Machine Instruction

1 F6 = P2/I5 D851332B
2 P6 = F2/I5 D851532B
3 I6 = P2/F5 7851532B

Table A.10: Mixed arithmetic division test instructions

Figure A.6: Simulation of mixed arithmetic division test instructions
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